Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This dataset contains a complete export of all iSamples records as of April 21, 2025, in GeoParquet format. The dataset includes over 6.6 million sample records with rich metadata including geographic coordinates, material classifications, context categories, and related resources. The data was exported using the iSamples export client with the query 'source:*', capturing the complete state of the iSample.xyz repository. Each record includes sample identifiers, descriptions, classifications, geospatial information (using WGS 84 coordinate system), timestamps, and various categorical attributes. This GeoParquet file provides an efficient format for analyzing the global distribution and classification of physical samples across scientific domains. The dataset is valuable for researchers working with physical samples in geoscience, material science, biology, and related fields who need to discover, access, or analyze sample collections at scale.more » « less
-
This Letter reports new results from the HAYSTAC experiment’s search for dark matter axions in our galactic halo. It represents the widest search to date that utilizes squeezing to realize subquantum limited noise. The new results cover of newly scanned parameter space in the mass ranges and . No statistically significant evidence of an axion signal was observed, excluding couplings and at the 90% confidence level over the respective region. By combining this data with previously published results using HAYSTAC’s squeezed state receiver, a total of of parameter space has now been scanned between , excluding at the 90% confidence level. These results demonstrate the squeezed state receiver’s ability to probe axion models over a significant mass range while achieving a scan rate enhancement relative to a quantum-limited experiment. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available April 1, 2026
-
We design and test a low-loss interface between superconducting three-dimensional microwave cavities and two-dimensional circuits, where the coupling rate is highly tunable. This interface seamlessly integrates a loop antenna and a Josephson junction-based coupling element. We demonstrate that the loss added by connecting this interface to the cavity is 1.28 kHz, corresponding to an inverse quality factor of 1/(4.5×106). Furthermore, we show that the cavity's external coupling rate to a 50 Ω transmission line can be tuned from negligibly small to over 3 orders of magnitude larger than its internal loss rate in a characteristic time of 3.2 ns. This switching speed does not impose additional limits on the coupling rate because it is much faster than the coupling rate. Moreover, the coupler can be controlled by low frequency signals to avoid interference with microwave signals near the cavity or qubit frequencies. Finally, the coupling element introduces a 0.04 Hz/photon self-Kerr nonlinearity to the cavity, remaining linear in high photon number operations.more » « less
-
Integrating mineralogy with data science is critical to modernizing Earth materials research and its applications to geosciences. Data were compiled on 95 650 garnet sample analyses from a variety of sources, ranging from large repositories (EarthChem, RRUFF, MetPetDB) to individual peer-reviewed literature. An important feature is the inclusion of mineralogical “dark data” from papers published prior to 1990. Garnets are commonly used as indicators of formation environments, which directly correlate with their geochemical properties; thus, they are an ideal subject for the creation of an extensive data resource that incorporates composition, locality information, paragenetic mode, age, temperature, pressure, and geochemistry. For the data extracted from existing databases and literature, we increased the resolution of several key aspects, including petrogenetic and paragenetic attributes, which we extended from generic material type (e.g., igneous, metamorphic) to more specific rock-type names (e.g., diorite, eclogite, skarn) and locality information, increasing specificity by examining the continent, country, area, geological context, longitude, and latitude. Likewise, we utilized end-member and quality index calculations to help assess the garnet sample analysis quality. This comprehensive dataset of garnet information is an open-access resource available in the Evolutionary System of Mineralogy Database (ESMD) for future mineralogical studies, paving the way for characterizing correlations between chemical composition and paragenesis through natural kind clustering (Chiama et al., 2022; https://doi.org/10.48484/camh-xy98). We encourage scientists to contribute their own unpublished and unarchived analyses to the growing data repositories of mineralogical information that are increasingly valuable for advancing scientific discovery.more » « less
An official website of the United States government
